bulletin of the chemical society of Japan, vol. 49 (9), 2633—2634 (1976)

Reaction Process between Cobalt Tungstate and Chlorine

Hisao Nishihara, Ryoko Matsuzaki, and Yuzo Saeki

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Received May 8, 1976)

Synopsis. The reaction between CoWO₄ and chlorine proceeds above about 585 °C to form WO₂Cl₂ and CoCl₂. In the presence of carbon, the reaction proceeds above about 345 °C to form CoCl₂ and WO₃, the WO₃ subsequently reacts with chlorine to form WO₂Cl₂ and WOCl₄.

The development of the chlorine process for the recovery of tungsten and cobalt from the sludge generated in the electrochemical grinding of WC-Co cemented carbide is important for the future. The sludge consists of 69% CoWO₄, 20% Na₂WO₄, 10% WC, and 1% C. In order to obtain chlorides of tungsten and cobalt from the sludge by selective chlorination, it is necessary to clarify the chlorination processes of the constituents of the sludge.

Concerning the reaction between CoWO₄ and chlorine, no information is presently available. In this report, the reaction processes between CoWO₄ and chlorine, and between CoWO₄ and chlorine in the presence of carbon are examined.

The sample of CoWO₄ used was prepared by adding an aqueous Co(NO₃)₂·6H₂O solution to an aqueous Na₂WO₄·2H₂O solution.¹⁾ Both the salts used were guaranteed reagents. The resulting precipitate was washed with water, air-dried, and dehydrated at 400 °C. The sample obtained was confirmed to be CoWO₄²⁾ by X-ray analysis.

The weight change on the heating of 0.3 g of $CoWO_4$ placed in a quartz crucible in a dry chlorine stream was examined using a thermal balance with a quartz helix. The chlorine flow-rate was maintained at 50 ml/min. and a heating rate of 2.5 °C/min was employed. The sensitivity of the quartz helix was about 0.13 mg/0.01 mm. The results are shown in Fig. 1 (curve (a)).

The TG curve shows that the reaction between Co-WO₄ and chlorine proceeds above about 585 °C.

The product formed by the chlorination of CoWO₄ was examined by heating 6 g of CoWO₄ in a quartz boat at a specified temperature and at a chlorine flow-rate of 350 ml/min for 1 h. The products obtained were ex-

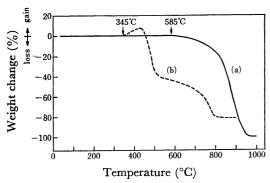


Fig. 1. TG curves of CoWO₄ (a), and a mixture of Co-WO₄ and C(b) in a chlorine stream.

amined by X-ray analysis³⁾ using Ni-filtered Cu radiation

The volatile products obtained by the chlorination of CoWO₄ at 600—800 °C were WO₂Cl₂ and CoCl₂. No chlorination product was observed in the boat placed in the heating zone. From these experimental results, it was found that the reaction between CoWO₄ and chlorine proceeds above about 585 °C to form WO₂Cl₂ and CoCl₂.

The chlorination process of metal oxides was affected by the existence of carbon.^{4,5)} Thus, the effect of the existence of carbon on the reaction between CoWO₄ and chlorine was examined. The sample of carbon used was prepared by the pyrolysis of guaranteed reagent grape sugar.

The TG curve of a mixture of CoWO₄ and carbon (CoWO₄: C=1:8 by molar ratio) on heating in a chlorine stream is shown in Fig. 1 (curve (b)).

It is observed that the sample weight increased above about 345 °C, then decreased above about 430 °C, and reached a constant value above about 850 °C. The residue in the crucible, after heating the sample up to 900 °C, was carbon.

The products formed by chlorinating CoWO₄ in the presence of carbon at a specified temperature for 0.5 h were examined by X-ray analysis.^{2,3,6)} The results are shown in Table 1. The weight percentages of the chlorides in the volatile product obtained outside the heating zone were calculated from chemical analysis.⁷⁾ The values are shown in parenthesis in Table 1.

Table 1. Chlorination products of a mixture of CoWO_4 and C

Temp (°C)	In the boat	Outside the heating zone
380	CoWO ₄ , WO ₃ , CoCl ₂	WO_2Cl_2
500	CoWO ₄ , CoCl ₂	$WO_2Cl_2 (>99.9\%)$
		$WOCl_{4} (< 0.1\%)$
600	CoWO ₄ , CoCl ₂	WOCl ₂ (>99.9%)
		$WOCl_{4} (< 0.1\%)$
		$CoCl_2$ (<0.1%)
700	$CoCl_2$	WO_2Cl_2 (95%)
		WOCl ₄ (2%)
		$CoCl_2$ (3%)
800	$CoCl_2$	WO_2Cl_2 (53%)
		WOCl ₄ (23%)
		CoCl ₂ (24%)

At 380 °C, WO₃ and CoCl₂ were formed in the boat, and WO₂Cl₂ was obtained outside the heating zone. Above 500 °C, no WO₃ was observed in the boat. Considering the fact that the reaction between WO₃ and chlorine in the presence of carbon begins at about 330 °C and proceeds markedly above about 400 °C to form

volatile WO₂Cl₂ and WOCl₄,⁴⁾ it appears to be probable that above 500 °C, the WO₃ formed by the chlorination of CoWO₄ subsequently reacts with chlorine to form volatile WO₂Cl₂ and WOCl₄. Above 600 °C, CoCl₂ was obtained outside the heating zone, as well as in the boat. It may be considered that since the vapor pressure of CoCl₂ became appreciable above 600 °C,8) the CoCl₂ formed by the chlorination of CoWO₄ vaporized and condensed outside the heating zone. Also, the ratio of WOCl₄ to WO₂Cl₂ in the volatile product increased with an increase in the reaction temperature. This fact was considered to support the above-mentioned estimate that WO₂Cl₂ and WOCl₄ were formed by the chlorination of the WO3 formed by the chlorination of CoWO4.49 Furthermore, the weight gain observed at temperatures from 345 to 430 °C in Fig. 1 (curve (b)) was found to be due to the formation of non-volatile WO₃ and CoCl₂ by the chlorination of CoWO₄.

From these experimental results, the reaction between CoWO₄ and chlorine in the presence of carbon proceeds above about 345 °C to form CoCl₂ and WO₃, the WO₃ subsequently reacts with chlorine to form WO₂Cl₂ and WOCl₄.

In the absence of carbon, the reaction between Co-WO₄ and chlorine proceeds above about 585 °C to form

CoCl₂ and WO₂Cl₂, as described above. Considering the fact that the chlorination of WO₃ begins at about 680 °C to form WO₂Cl₂,⁴⁾ it appears probable that the WO₂Cl₂ was directly formed by the chlorination of CoWO₄ without passing through WO₃.

The authors wish to thank the Ministry of Education for research funds.

References

- 1) I. K. Taimni and I. S. Ahuya, Anal. Chim. Acta, 21, 3 (1959).
 - 2) ASTM card, 15-867.
- 3) O. Jarchow, F. Schröder, and H. Schulz, Z. Anorg. Allgem. Chem., 363, 58 (1968); ASTM card, 15—381.
- 4) Y. Saeki, T. Takuma, and K. Funaki, Kogyo Kagaku Zasshi, 73, 1093 (1970).
- 5) Y. Saeki, T. Ono, and R. Matsuzaki, Kogyo Kagaku Zasshi, 74, 828 (1971).
- 6) H. Hess and H. Hartung, Z. Anorg. Allgem. Chem., 344, 157 (1966); ASTM card, 5—363.
- 7) Y. Saeki, A. Kato, and R. Matsuzaki, *Chem. Lett.*, **1975**, 935.
- 8) H. Schäfer and K. Krehl, Z. Anorg. Allgem. Chem., 268, 25 (1952); H. Schäfer, Z. Anorg. Allgem. Chem., 278, 300 (1955).